Phys 402 Fall 2022

Homework 3

Due Wednesday, 21 September @ 10 AM as a PDF upload to ELMS

- 1. Griffiths and Schroeter *Quantum Mechanics*, 3rd Ed., Problem 7.19 (Commutators in the spin-orbit coupled H-atom) *Hint: Make use of Griffiths Eq. [3.65]*
- 2. Griffiths and Schroeter *Quantum Mechanics*, 3rd Ed., Problem 7.20 (Full fine-structure formula)
- **3**. Griffiths and Schroeter *Quantum Mechanics*, 3rd Ed., Problem 7.33 (Electron in the nucleus!)
- **4**. Consider a perturbation problem in a 2-dimensional Hilbert space (this simplifies the math, and allows us to think about particles with spin-1/2). The unperturbed Hamiltonian is $\mathcal{H}^0 = \begin{pmatrix} 0 & \eta \\ n & 0 \end{pmatrix}$
- a) Find the eigenvalues E_1^0 , E_2^0 and eigenfunctions $|\psi_1^0\rangle$, $|\psi_2^0\rangle$ of the unperturbed Hamiltonian.
- b) The perturbing Hamiltonian is $\mathcal{H}' = \begin{pmatrix} 0 & -i\lambda \\ i\lambda & 0 \end{pmatrix}$. Find the first order correction to the eigen-energies, E_1^1 , E_2^1 .
- c) Can you supply a physical justification for the results in part (b)? Hint: Note that \mathcal{H}^0 is proportional to the σ_x Pauli spin matrix and \mathcal{H}' is proportional to σ_y .
- d) Now calculate the second order corrections to the eigen-energies, E_1^2 , E_2^2 . State the energies of the two eigen-states to second order in perturbation theory.
- 5. This problem goes through the process of quantizing the inductor-capacitor (LC) electrical resonator. Consider a parallel LC circuit, with no resistance. The inductor stores energy in magnetic fields: $U_L = \frac{1}{2}Li^2$, where i is the current through the inductor. We can change the independent variable from current i to magnetic flux Φ , as follows. The inductance is defined as the magnetic flux generated per unit current, $L = \Phi/i$, where $\Phi = \iint_S \vec{B} \cdot d\vec{A}$, and S is a surface intercepting the field created by the current. Note that the voltage drop on the inductor is given by $V(t) = L\frac{dI}{dt} = \dot{\Phi}$, where the over-dot denotes time derivative. The stored energy can be written as $U_L = \frac{1}{2}\Phi^2/L$, where we can treat the flux Φ as the new independent variable (generalized coordinate). Meanwhile the capacitor stores energy in electric field as $U_C = \frac{1}{2}CV^2 = \frac{1}{2}C\dot{\Phi}^2$. Note that the energies are now written in terms of flux Φ and its time derivative $\dot{\Phi}$.

Continued on next page

There is an analogy between a (mechanical) simple harmonic oscillator and the LC electrical circuit. We will actually use the <u>dual</u> of the traditional electrical analogy, as outlined in this table:

Mechanical	Electrical	Dual Electrical
Position <i>x</i>	Charge Q	Flux Φ
Mass m	Inductance L	Capacitance C
Spring constant <i>k</i>	1/ <i>C</i>	1/L
Momentum $p = m\dot{x}$	$L i = L\dot{Q}$	Сф
Kinetic Energy $\frac{1}{2}m\dot{x}^2$	$\frac{1}{2}Li^2$	$\frac{1}{2}C\dot{\Phi}^2$
Potential Energy $\frac{1}{2}kx^2$	$\frac{1}{2}Q^2/C$	$\frac{1}{2}\Phi^2/L$

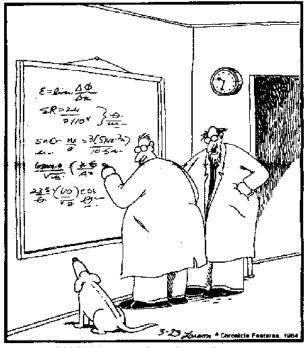
- a) Using the dual electrical analog of the harmonic oscillator, write the Lagrangian of the LC circuit in terms of the generalized coordinate (Φ) and its time derivative as $\mathcal{L}(\Phi, \dot{\Phi}) = T U$, where T is the kinetic energy and U is the potential energy.
- b) Find the conjugate momentum from the Lagrangian as $p = \partial \mathcal{L}/\partial \dot{\Phi}$. This is the momentum that is conjugate to the generalized coordinate Φ . What electrical quantity is conjugate to the flux?
- c) Find the Hamiltonian by first re-expressing $\dot{\Phi}$ in terms of only the generalized coordinate and its conjugate momentum. Next, calculate the Hamiltonian as $\mathcal{H}(q,p) = \sum_{i=1}^n p_i \, \dot{q}_i \mathcal{L}(q_i, \dot{q}_i)$, where n=1 in this case, taking care to replace $\dot{\Phi}$ with it's reexpressed version.
- d) Now quantize the Hamiltonian by replacing the dynamical variables with corresponding quantum operators. Because the classical dynamical variables are canonically conjugate, their corresponding quantum operators will have a non-zero commutator (recall the Poisson Bracket problem in HW 2). Write down this commutator, in addition to writing out the quantum Hamiltonian.
- e) Express the generalized coordinate and momentum operators from part (d) in terms of raising and lowering operators, utilizing the direct analogy with the 1D quantum mechanical harmonic oscillator (take a look at section 2.3.1, and Example 2.5, of Griffiths). Write the coefficients that appear in the raising and lowering operators in terms of \hbar , C, and $\omega \equiv 1/\sqrt{LC}$, only.
- f) Re-express the quantum LC Hamiltonian operator in terms of the raising and lowering operators, ω , and \hbar , only. This completes the quantization process.

EXTRA CREDIT

3. Griffiths and Schroeter *Quantum Mechanics*, 3rd Ed., Problem 7.38 (Feynman – Hellmann Theorem)

THE FAR SIDE

By GARY LARSON



"Ohhhhhhh . . . Look at that, Schuster . . . Dags are so cute when they try to comprehend quantum mechanics."